Package edu.wisc.game.math
Class MannWhitney
- java.lang.Object
-
- edu.wisc.game.math.MannWhitney
-
public class MannWhitney extends Object
The Mann-Whitney math
-
-
Constructor Summary
Constructors Constructor Description MannWhitney()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static double
count(double[] a, double[] b)
How many pairs (i,j) exist where a[i] < b[j]? Ties are counted as 0.5.static void
main(String[] argv)
static double[][]
ratioMatrix(double[][] z)
static double[][]
rawMatrix(double[][] a)
The element z[i][j] of the results is equal to the number of pairs (k,m) such that a[i][k] < a[j][m].static void
test1(String[] argv)
static void
test2(String[] argv)
static double[]
topEigenVector(double[][] a)
Given a dense matrix with positive elements, find the eigenvector corresponding to the largest eigenvalue.
-
-
-
Method Detail
-
count
public static double count(double[] a, double[] b)
How many pairs (i,j) exist where a[i] < b[j]? Ties are counted as 0.5.- Parameters:
a
- Ascending sortedb
- Ascending sorted
-
rawMatrix
public static double[][] rawMatrix(double[][] a)
The element z[i][j] of the results is equal to the number of pairs (k,m) such that a[i][k] < a[j][m].- Parameters:
a
- Each row of this matrix represent a "cloud" of points to be compared. It will be sorted.
-
ratioMatrix
public static double[][] ratioMatrix(double[][] z)
- Parameters:
z
- The raw matrix- Returns:
- w[i][j] = (z[i][j]+1)/(z[j][i]+1)
-
topEigenVector
public static double[] topEigenVector(double[][] a)
Given a dense matrix with positive elements, find the eigenvector corresponding to the largest eigenvalue. By Perron-Frobenius theorem, we know that such a vector exists, and is composed of positive elements.
-
test1
public static void test1(String[] argv)
- Parameters:
argv
- a,b,c,d e,f,g
-
test2
public static void test2(String[] argv)
- Parameters:
argv
- a,b,c,d e,f,g h,i,j,k,l ....
-
main
public static void main(String[] argv)
-
-